3 research outputs found

    A Continuous Review Production-Inventory System with a Variable Preparation Time in a Fuzzy Random Environment

    No full text
    With the increase in the varieties products and the increasing uncertainty about product demand, the production preparation time is a significant factor in addressing these issues. The trade-off between the reduction of the production preparation time and the associated cost remains a critical decision. With this backdrop, this study presents a continuous review production-inventory model with a variable production preparation time and a time-dependent setup cost. The demand during the preparation time is captured through a min-max distribution-free approach. In a stochastic framework, the order quantity, reorder point, and setup time are optimized by minimizing the expected cost considering the time-value effect. Further, a fuzzy model is formulated to tackle the imprecise nature of the production setup time and demand. Two algorithms are developed using an analytical approach to obtain the optimal solution. A numerical illustration is given to present the key insights of the model for effective inventory management. It is observed that order quantity and total cost are more sensitive at the lower side of the optimal setup time rather than at the higher side. The discount rate is also found to be a sensitive factor while minimizing the total expected cost

    Development of a Fuzzy Economic Order Quantity Model of Deteriorating Items with Promotional Effort and Learning in Fuzziness with a Finite Time Horizon

    No full text
    This study investigates an economic order quantity model of deteriorating items, where demand is fuzzy in nature and depends on promotional effort with full backorder for a given time horizon. The learning effect in the fuzzy environment is added in this model. A constant deterioration rate is assumed. Under these circumstances, a mathematical model is developed to curtail the total cost over a finite time horizon by determining the replenishment order quantity, number of replenishments, and the fraction of the replenishment cycle when inventory is positive. A solution algorithm is developed to find the optimal solutions. The applicability of the proposed model is illustrated through numerical examples. To get further insights, sensitivity analysis is carried out for the main parameters in crisp, fuzzy, and fuzzy-learning environments
    corecore